tg-me.com/ds_interview_lib/382
Last Update:
Как можно справиться с проблемой холодного старта в рекомендательных системах?
Проблема холодного старта возникает, когда новая система не имеет достаточных данных о пользователях или предметах.
Например, мы научились делать предсказания для существующих пользователей и товаров. Тогда возникает два вопроса: — «Как рекомендовать товар, который ещё никто не видел?» и «Что рекомендовать пользователю, у которого ещё нет ни одной оценки?». Для решения этой проблемы стараются извлечь информацию из других источников. Это могут быть данные о пользователе из других сервисов, опросник при регистрации и т.д.
Кроме того, существуют задачи, для которых состояние холодного старта является постоянным. Так, в Session Based Recommenders нужно успеть понять что-то о пользователе за то время, что он находится на сайте. В рекомендательных системах новостей тоже постоянно появляются новые единицы контента, а предыдущие быстро устаревают.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/382